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Abstract. A simple and general derivation of the functional formalism of classical statistical 
dynamics of Martin, Siggia and Rose is presented without the necessity of introducing 
non-commuting operators into the discussion. This is achieved by making use of functional 
integral representations of the correlation and response functions of the system. Some 
approximation procedures based on the functional integral representation are briefly 
discussed. 

1. Introduction 

The purpose of this paper is to provide a simple and general derivation of the functional 
formalism of classical statistical dynamics (to be referred to as the MSR formalism) which 
has been developed in the last three years. This is done by utilizing functional integral 
representations of the correlation and response functions of the system. The introduc- 
tion of functional integrals in non-equilibrium statistical mechanics goes back to the 
work of Hosokawa (1967) and Rosen (1970), and the present paper provides an 
extension of their ideas. 

In previous derivations of the MSR formalism (Martin e? a1 1973, Phythian 1975, 
1976, Kawasaki 1974, Enz and Garrido 1976) an essential role has been played by 
certain operators which may roughly be described as creating excitations of the system. 
These are found to satisfy boson type commutation relations with the dynamical 
variables, together with an equation of motion consistent with such relations. The 
functional formalism is established by first showing that correlation and response 
functions for the system are given by averages of time-ordered products of such 
operators. A generating functional is then defined by means of a time-ordered 
exponential, and functional differential equations satisfied by this generating functional 
are derived. We shall refer to such equations as Schwinger equations since the analysis 
closely resembles that of Schwinger in the quantum theory of fields. 

It has long been known that quantum mechanics can be formulated in terms of 
functional (path) integrals rather than operators and it is not surprising that the same is 
true of classical statistical dynamics. In fact this formulation already exists to some 
extent in the work of Hosokawa and Rosen on turbulence theory referred to above. The 
basic inadequacy of their work from our point of view is that it contains no discussion of 
response functions, however this deficiency can easily be removed as will be shown 
later. Functional integral representations of correlation functions have also been 
derived by Graham (1973) (see also Kubo et a1 1973, Yahata 1974), for systems driven 
by white noise forces. While this work was being prepared a paper by Janssen (1976) 
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appeared in which a representation of response functions was derived from Graham's 
results so obtaining a particular case of the results given here. 

When a representation of both correlation and response functions has been found it 
is a simple matter to define a suitable generating functional in the form of a path integral 
from which the Schwinger equations may be derived. The restriction to Gaussian 
stirring forces or initial conditions which have been made previously can be relaxed 
without unduly complicating the discussion. It should be mentioned that, in unpub- 
lished work, Rose has also considered the non-Gaussian case using the operator 
method and reached similar conclusions to those reported here. 

The functional integral representation is also useful in suggesting approximations 
which are difficult to formulate in any other way, and in conclusion we briefly describe 
some ideas along these lines. 

2. The functional integral representation 

We shall consider in detail a system described by a set of dynamical variables 
+(T) = {& (7)) which satisfy an equation of motion of the form 

$a (7) =fa (7) (+(7), 7). (1) 

Results will be stated later for a more general equation of motion. The quantities Aa 
are given non-random functions of the dynamical variables and time 7, while fa(.) are 
random functions to be referred to as stirring forces. The probability distribution of 
these is given in terms of the characteristic functional defined as the expectation value 

which is defined for suitably well behaved test functions 4. We shall assume for 
simplicity that a ranges over the finite set of integers 1,2, . . . , M, and a summation over 
repeated suffixes is implied. The system is regarded as being in a definite state at some 
initial time to, the dynamical variables having given values +&". We shall be interested 
in the situation during some finite but arbitrarily long time interval (to, t )  and this is 
reflected in our definition of the characteristic functional. Without loss of generality the 
stirring forces can be taken as having zero mean. A situation in which there are random 
initial conditions can be described in the same way if the stirring forces are regarded as 
including random impulses acting at time to. 

Our derivation of the functional integral makes use of the usual limiting procedure 
in which the time interval (to, t )  is divided into N equal subintervals (to, t l ) ,  ( t l ,  f 2 ) ,  . . . of 
duration 1, and the equation of motion is replaced by a difference equation. The most 
obvious difference equation to use is the one considered by Hosokawa and Rosen: 

which approximates the equation of motion to order 1. Instead we shall consider the 
equation accurate to order 1 2 :  

where fk") denotes fa(( tX)  with tX = $(t,-, + t , ) .  The equation (3) relates the two sets of 
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variables ( f ( " ,  . . . , f N ' )  and (+('), . . . , +,"'). The corresponding probability density 
functions Q, P are related by the equation 

P(+(", . . . , +"') = JQ(f"', . . . , f"') 
where J is the Jacobian determinant: 

det( $) 

the comma notation denoting differentiation with respect to the 
simplest way to evaluate this determinant is to write it in the form 

1 - det(l+ K) lNM 

where K is the matrix with elements 

variables $. The 

K$" = - SupSn-l,m - ;LAu,@ (+("), tn)Snm -iLAa,p (+("-'), tn-l)Sn-l,m 

and to use the identity 

de t ( l+K)=expTr  ln(l+K)=expTr(K-$K'+ . . .). 
Since the elements of K above the diagonal n = m are all zero it follows that Tr K 2  is the 
sum of NM terms of order 12 ,  Tr K 3  the sum of NM terms of order l 3  etc. In the limit as 
1 + 0 the only non-zero contribution comes from Tr K so we finally obtain 

1 N 
J = - exp( -41 1 A,,, (+("), t , , ) ) .  

lNM n = l  

The probability density P is therefore given by 

with 

The probability density of the variables f is more conveniently expressed in terms of 
their joint characteristic function defined by 

N Ceh"', . . . , x"') = df") . . . 1 df"'O(f"', . . . , f"') exp( i 1 xh. n' f u  (n) ) 
n = l  

and using the inverse of this relationship we obtain 

P ( l p ,  . . . , 4"') 
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It is apparent that in the limit as 1 + 0 

% ( p ,  . . . , 1 p )  + C k ]  

where xt'=xa(t:). 
The mean value of a function F of the variables (I, may be written 

5 d(I,"' . . . j d$"' [ dx'l' . . ,I dx(N)F($(l', . . . , I,!I(~))%'(~x(~), . . . ,1x"') 
( n )  ( n )  

( 5 )  
xexp(-tl L ,~( ( I , (~ ' ,  tn)-il znxa 4, ) 

xexp(-$l I;, A,,, (rL'"', t,) - il E, xr'4:') 
d(I,"' . . . d(I,"' dx"' . . . dX"'%(lX'I', . . . , 1~"') 

which in the limit gives the mean value of a functional F[(I,] in the form 

where the notation of Feynman and Hibbs (1965) has been used and A is given by 

with 

4a (7)  = (7) - Aa ( ( I , (T ) ,  7 ) .  

This is equivalent to the expressions derived by Hosokawa and Rosen as will be 
indicated later. 

The (I, integration in (6) is to be taken over all trajectories in phase space consistent 
with the initial conditions. It is important to observe that in the expression ( 5 )  the limit 
of which defines the functional integral, the (I, and x variables are considered at different 
times: the (I, at tl, . . . , try and the x at f?, . . . , t;. In the same way an integral 

[ D[(I,l [ DLYIF[(I,, XIA[(I,, XI  

[: dTd(I,(T), x(.>) 

is defined in terms of a multiple integral in which F is replaced by a function of the values 
taken by (I, at tl, . . . , tN and by x at t?, . . . , f;. For example a functional of the form 

would be replaced by 
N 

41 (g((I,'"', x'"') +g((I,("-l), x'"') 
n = l  

with (I,("'= (I,(f,,) and X'"'=X(t:). This definition of functional integrals has been 
discussed in detail by Katz (1965), and has the advantage of removing any ambiguity 
when the integrand involves (I, and x evaluated at the same instant. It is equivalent to 
replacing g((I,(T), ~ ( 7 ) )  by 

f ( g ( ( I , ( T ) ,  X ( 7  - E )) + g((I,(T),  X (7 + E ) ) )  

and taking the limit E + 0 after the integration has been performed. 
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A particular case of (6) which will be needed later is the expression for the 
correlation function 

We now examine the response of the system to a small perturbation of the stirring 
force. We consider a small non-random perturbation e , ( T )  to be added to f,(T) on the 
right-hand side of equation (1). The change in the expectation value of a functional F is 
then given by 

and the response of the system is described by the expectation values on the right-hand 
side. However, it is seen that adding e , ( T )  to the right-hand side of the equation of 
motion leads to the subtraction of e, (7) from q , ( ~ ) ,  so that the effect of the perturbation 
on the expression (6) is to introduce into the integrands of numerator and denominator 
the factor 

Moreover, consideration of the normalization condition on the probability density P 
shows that the denominator is unaltered by the inclusion of this factor in the integrand. 
Hence we obtain 

J D[+] J~D~]~[+](ei'd"-"'X-"' - M [ + ,  XI  
j D[+I J D k l A [ q 7  XI S(F)  = 

Expanding the exponential and comparing the two series for S(F)  shows that 

The first-order response function of the system is defined as 

and is clearly given by 

J D[+I J ~kIi+, (7)xp (+)A [+, XI 
J D[+I J D h M [ + ,  XI 

The defining expression for the response function has a jump discontinuity at T = 7' (see 
below) and is not uniquely defined. If we require it to be given by the above functional 
integral for all T ,  T '  then, in view of our definition of such integrals, the response function 
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must be taken as half the sum of the right- and left-hand limits 7’+ T It 0. Higher-order 
response functions are defined in the usual way: 

the functional integral representation being 

It is seen therefore that the functions x which arise merely as integration variables in the 
work of Hosokawa and Rosen serve to generate the response functions. 

We now derive an identity which will prove useful in deriving the Schwinger 
equations in their usual form. The equation of motion (1) may be rewritten 

4, (7) = I d7” fa (7”) + 1: dT” A, ($(T”), 7”). 
to 

Since $, (7) is functionally independent of f a  (7’) for T’> T we clearly have the causality 
relation 

a$, ( Q ) / S f @  (7’) = 0 

for 7 < T’, while for T > 7’ we can write 

In view of the causality property, the integral on the right.&.and side is over the range 
7’ < 7’’ < 7, and in the limit as 7’ + 7 - we have S$, (7) /Sfa  (7’) + Sue. We shall assume 
that this jump discontinuity is the only discontinuity of S$,((Q)/Sf , (T’) .  

We now consider the quantity 

For 7 - T’+ 0 + the right-hand side tends to 

while for T - T’+ 0- it tends to 

If it is assumed that the functional B is such that SB/S$@ ( T )  is a continuous function of T,  
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then so is SB/Sfp(7) and the difference of the two expressions is 

B[$Ih,, (+(TI). 

If this result is expressed in terms of functional integrals we have 

i I D[$]/ D C X ] ( X ~ ( ~ - ) - X ~ ( ~ + ) ) B [ $ ] ~ ( $ ( ~ ) ) A [ ~ ,  XI  

(9) 

The same result is true if the integrand on each side of the equation is multiplied by 

since this simply corresponds to considering a different equation of motion with an extra 
term ~ ~ ( 7 )  on the right-hand side. This identity can be used to demonstrate the 
equivalence of the functional integral representation given here with that derived by 
Hosokawa and Rosen. The appearance here of an extra factor exp(-$ j ; , ,Aa,a($(~) ,  7)) 

in A arises from the different definition given for the functional integral. 

3. The relation with MSR theory 

The next step is the introduction of a generating functional in the obvious way: 

where the 7 integration is over the interval (to, t )  as before, and & ( T ) ,  ~ ~ ( 7 )  are test 
functions. Correlation and response functions are obtained from Z by functional 
differentiation: 

where the zero outside the bracket indicates that 5 and 7 should be set equal to zero. In 
addition we have 

[Z], = 1. 

From these equations it is apparent that the generating functional of MSR theory is just 
Z [  - it, 1. 

The Schwinger equations satisfied by Z can be obtained by simple manipulations of 
the functional integral (10) which can be justified for the corresponding discrete 
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integral. Using a simplified notation for brevity we have 

- a (1 -- ) = J ~ & ( T )  exp[ij(tJ/ + vx)M 
87 i sg,(~) II A 

The numerator of the second term on the right can be written 

and performing the integration by parts gives 

If we define 

this expression becomes 

so that the Schwinger equation becomes 

If In Ch] is expanded as a functional power series 

where R is the second-order correlation function and M the third-order cumulant, the 
equation becomes 

For the Gaussian case the third- and higher-order cumulants vanish and the equation 
reduces to one previously given (Phythian 1975). It is apparent that in the diagram 
expansion for the non-Gaussian case 'bare' vertices of third- and higher-order will 
appear. 
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Recalling the identity (9) and the definition of integrals with simultaneous $ and x, the 
numerator of the second term on the right can be rewritten 

-i j j e i l ~ * + + " ~ ' [ t i ~ p ( 7 - ) - x p ( T + ) ) h p , , ( 1 ( 1 ( T ) ,  7) T)IA 

= -1 1 eiJ(t++qx) xp(~+)Ap,, ($(7),7)A. 

The second Schwinger equation then becomes 

4. More general equation of motion 

We now consider a more complicated equation of motion 

where f and g are random functions of zero mean whose probability distribution is 
specified by the joint characteristic functional 

The simplest way to derive the functional integral representation in this case is to 
imagine the functions g held fixed so that the above method may be used, and then to 
perform the further averaging over g. The formula (6) remains true with A now given 
by 
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where 

p = rx +i div r 
is an abbreviated notation for 

As before the functional integral is defined as the limit of a discrete integral of a function 
of the variables I(l(fl), . . . , I ( l ( f N ) ;  ,y(tT), . . . , x(t$), and the rule for treating simultane- 
ous I(l and x remains the same. 

The response to non-random perturbations off is given as before by (8) using the 
new form of A. It is of interest to consider also the response to perturbations of g. The 
effect of adding e,(7) to g , ( ~ )  is to replace q , ( ~ )  in the expression for A by 

and proceeding as before we obtain finally 

The generating functional is defined as before and the Schwinger equation obtained 
by manipulations of the defining integral. We obtain 

where 

The rule for treating integrals with simultaneous 1+9 and x implies a similar rule for the 
simultaneous derivatives s / S i $ ( ~ ) ,  6/87 (7).  For the particular case in which f and g are 
independent Gaussian random functions these equations can be expressed in a form 
derived previously (Phythian 1976). 
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5. Discussion 

It has been demonstrated that the functional integral representation provides the 
simplest approach to the derivation of Schwinger equations and hence of the associated 
diagram formalism. In addition it can suggest approximations which are difficult to 
formulate by any other means. Two possibilities which come to mind are the extremal 
path approximation and the Feynman variational method. However, the functional 
integral given here is not in a form suitable for the application of these methods. To see 
this more clearly let us consider the quantity A given by (7) for the Gaussian case with 
correlation function R.  We have 

-4 [ d + l  dT’R,B(T, T’)X,(T),YB(~’)) 

and it is seen that the exponent is neither real nor pure imaginary. A real exponent is 
necessary for the application of the Feynman variational method, as for example in 
equilibrium statistical mechanics (Feynman and Hibbs 1965). Similarly the interpreta- 
tion of the extremal path approximation is not clear since, whereas the integration 
extends only over real functions, the extremal will not in general be attained for real 
functions. A similar question arising in a different context has been discussed by 
McLaughlin (1972). 

These difficulties can be avoided in the Gaussian case by performing the x integra- 
tion explicitly. Ignoring the normalization constant the integral for (F)  then assumes 
the form 

where Q is the inverse of R (assumed non-singular) 

d7’QaB(7, 7’)RBy(7’, T ” ) = S , ~ S ( T - T ” ) .  i: 
If F =  1 and the integral is evaluated over all trajectories with +(to)  and + ( t )  taking 
prescribed values it gives the joint probability density for the dynamical variables at 
time t. This form of the integral is analogous to the Feynman path integral 

while the original form is the analogue of 
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where we have defined $ by the equation 

= 1‘ dT’ Q , ~ ( T ,  T ’ ) ( $ ~ ( T ’ ) - A ~ ( $ ( T ’ ) ,  7’)). 
to 

Not surprisingly these equations are similar to those which appear in the operator 
theory. If it is assumed that the extrema1 value corresponds to a strong maximum of the 
exponential, a good approximation will be given by retaining in the exponent terms up 
to second order in the departure of a trajectory from the most probable one. The details 
are similar to those involved in the discussion of the quasi-classical approximation of 
quantum mechanics. There still remains the integration over the amplitudes at time t if 
correlations are to be calculated so the method is likely to be useful only if the number of 
modes is small unless further approximations are made. This method has recently been 
applied to the problem of wave propagation in random media by Chow (1972). 

The Feynman variational method (Feynman and Hibbs 1965) is based on the 
inequality 

D[$] e’[+] 3 e(’-’) D[$] eB[$] I I 
where ( S  -B)  denotes 

If B is chosen as a quadratic functional, the integrals on the right can be performed 
provided that S is a polynomial functional. By varying B to maximize the right-hand 
side a lower bound is obtained which in some cases can give a useful approximation. 

Another approximation closely related to the one just described is given by Siege1 
and Burke (1972). This gives what is essentially a perturbation theory treatment of the 
non-linear terms of the equation of motion, but differs from the usual perturbation 
theory in that the average of these terms, defined in terms of a suitable function space 
integral, is first subtracted out. This method can be applied to either form of the 
functional integral representation. 

The functional integral representation would therefore seem to merit further 
investigation and we hope to give a fuller discussion of these ideas in a later work. 
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